

- Any tree consisting solely of edges in G and including all vertices in G is called a *spanning tree*.
- Spanning tree can be obtained by using either a depth-first or a breath-first search.
- When a nontree edge (v, w) is introduced into any spanning tree T, a cycle is formed.
- A spanning tree is a minimal subgraph, G', of G such that V(G') = V(G), and G' is connected.
 (Minimal subgraph is defined as one with the fewest number of edges).
- Any connected graph with n vertices must have at least n-1 edges, and all connected graphs with n – 1 edges are trees. Therefore, a spanning tree has n – 1 edges.

When G is connected, DFS or BFS is applied, then the edges is partitioned into T and N

T: edges used during traversal, also called tree edges

N: nontree edges

Spanning tree: all vertices + T

(a) DFS (0) spanning tree

(b) BFS (0) spanning tree

Biconnected Components

- Definition: A vertex v of G is an articulation point iff the deletion of v, together with the deletion of all edges incident to v, leaves behind a graph that has at least two connected components.
- Definition: A biconnected graph is a connected graph that has no articulation points.
- Definition: A biconnected component of a connected graph G is a maximal biconnected subgraph H of G. By maximal, we mean that G contains no other subgraph that is both biconnected and properly contains H.

- Algorithm efficiency is equal to the function of number of elements to be processed.
- > We must know efficiency of loop

- Example
- i=1
 - Loop(i<=10)
 - i=i+1

...

Example 1 i=1 Loop(i<1000) Example 2 i=1000 Loop(i>=1)

i=i*2

i=i/2

Logarithmic loop (continued)

	-		
	Value of i(multiplication)		Value of i(Division)
1	1	1	1000
2	2	2	500
3	4	3	250
4	8	4	125
5	16	5	62
6	32	6	31
7	64	7	15
8	128	8	7
9	256	9	3
10	512	10	1
Exit	1024	Exit	0

- Iteration=Outer loop iteration*
 Inner loop iteration
- Three types of nested loop
- Linear Logarithmic
- > Dependent Quadratic
- >Quadratic

- Example
- i=1
 - loop(i<=10) j=1 loop(j<=10)

...

- Example
- i=1
 - loop(i<=10) j=1 loop(j<=i)
 - j=j+1 i=i+1

- Example
- i=1
 - loop(i<=10) j=1 loop(j<=10)
 - j=j+1 i=i+1

...

Statement			
Algorithm Sum(a, n)	0	-	0
{	0	-	0
s=0.0;	1	1	1
for i:=1 to n do	1	n+1	n+1
s=s +a[i];	1	n	n
return s;	1	1	1
}	0	-	0
Total			2n+3

F

- Network flow
- Bridge Block problem
- Cluster

Rapid protein side-chain prediction

Q.1) What is bi-connected graph? Give an example of the bi-connected component.

```
Q.2)What is articulation point?
Q.3What is efficiency of following algorithm
```

```
Unsigned int fibonacci (Unsigned int n)
```

Ł

}

```
int previous=-1;
int result=1;
for(unsigned int i=0;i<=n;++i)
{
int sum=result+previous;
previous=result;
result=sum;
}
return sum;
```