Spanning Tree

- Any tree consisting solely of edges in G and including all vertices in G is called a spanning tree.
- Spanning tree can be obtained by using either a depth-first or a breath-first search.
- When a nontree edge (v, w) is introduced into any spanning tree T , a cycle is formed.
- A spanning tree is a minimal subgraph, G^{\prime}, of G such that $V\left(G^{\prime}\right)=V(G)$ and G^{\prime} is connected. (Minimal subgraph is defined as one with the fewest number of edges).
- Any connected graph with n vertices must have at least $n-1$ edges, and all connected graphs with $n-$ 1 edges are trees. Therefore, a spanning tree has $n-1$ edges.

Spanning Tree

When G is connected, DFS or BFS is applied, then the edges is partitioned into T and N

T: edges used during traversal, also called tree edges
N : nontree edges

Spanning tree: all vertices + T

A Complete Graph and Three of Its Spanning Trees

Depth-First and BreathFirst Spanning Trees

(a) DFS (0) spanning tree
(b) BFS (0) spanning tree

Biconnected Components

- Definition: A vertex v of G is an articulation point iff the deletion of v, together with the deletion of all edges incident to v, leaves behind a graph that has at least two connected components.
- Definition: A biconnected graph is a connected graph that has no articulation points.
- Definition: A biconnected component of a connected graph G is a maximal biconnected subgraph H of G. By maximal, we mean that G contains no other subgraph that is both biconnected and properly contains H .

A Connected Graph and Its Biconnected Components

(b) Its biconnected components

Maximal without articulation point

Efficiency of Algorithm

$>$ Algorithm efficiency is equal to the function of number of elements to be processed.
$>$ We must know efficiency of loop

Linear loop

- Example
i=1
Loop(i<=10)
$i=i+1$

Logarithmic loop

Example 1

i=1
Loop(i<1000)
$i=i * 2$

Example 2
i=1000
Loop(i>=1)
$i=i / 2$

Logarithmic loop (continued)

Iteration	Value of (multiplication)	Itaration of (Division)	
1	1	1	1000
2	2	2	500
3	4	3	250
4	8	4	125
5	16	5	62
6	32	6	31
7	64	7	15
8	128	8	7
9	256	9	3
10	512	10	1
Exit	1024	Exit	0

Nested loop

- Iteration=Outer loop iteration* Inner loop iteration
- Three types of nested loop
>Linear Logarithmic
$>$ Dependent Quadratic
>Quadratic

Linear logarithmic

- Example
$i=1$

$$
\begin{aligned}
& \operatorname{loop}(i<=10) \\
& \quad j=1 \\
& \\
& \quad \operatorname{loop}(j<=10) \\
& \\
& \quad \ldots \\
& \\
& \\
& j=j \star 2
\end{aligned}
$$

$$
i=i \star 2
$$

Dependent Quadratic

- Example
i=1

$$
\begin{aligned}
& \operatorname{loop}(i<=10) \\
& j=1 \\
& \quad \operatorname{loop}(j<=i) \\
& \quad \ldots \\
& j=j+1 \\
& i=i+1
\end{aligned}
$$

Quadratic

- Example
$i=1$
$\operatorname{loop}(i<=10)$
$\mathrm{j}=1$
$\operatorname{loop}(\mathrm{j}=10)$
$j=j+1$
$i=i+1$

Example1

Statement	s/e	frequency	0
Algorithm $\operatorname{Sum}(a, n)$	0	-	0
$\{$	0	-	1
$s=0.0 ;$	1	1	$n+1$
for $i:=1$ to n do	1	$n+1$	n
$s=s+a[i] ;$	1	1	1
return $s ;$	1	-	0
$\}$	0		$2 n+3$

Application

- Network flow
- Bridge Block problem
- Cluster

Scope of research

- Rapid protein side-chain prediction

Assignment

Q.1) What is bi-connected graph? Give an example of the bi-connected component.
Q.2)What is articulation point?
Q.3What is efficiency of following algorithm

Unsigned int fibonacci (Unsigned int n)
\{
int previous=-1;
int result=1;
for(unsigned int $i=0 ; i<=n ;++i$)
\{
int sum=result+previous;
previous-result;
result=sum;
\}
return sum:
\}

